CRISPR/CasRx suppresses KRAS-induced brain arteriovenous malformation developed in postnatal brain endothelial cells in mice.
Saito S, Nakamura Y, Miyashita S, Sato T, Hoshina K, Okada M, Hasegawa H, Oishi M, Fujii Y, Körbelin J, Kubota Y, Tainaka K, Natsumeda M, Ueno M.
JCI Insight 9: e179729, 2024
https://insight.jci.org/articles/view/179729
老化した神経修復能を回復させるリハビリテーション
田中貴士,上野将紀
Medical Science Digest.50(12): 602–604, 2024
脳脊髄液接触ニューロンの神経ネットワークの解明
中村由香,上野将紀
生体の科学.75(5): 406-7, 2024
脳梗塞後における皮質脊髄路の再編様式と分子機序
佐藤時春,上野将紀
Medical Science Digest.50(6): 48–50, 2024
ALSにおける異常タンパク質の伝播: TDP-43による運動神経回路内の病態の進行
坪口晋太朗 ,小野寺理, 上野将紀
TDP-43 differentially propagates to induce antero- and retrograde degeneration in the corticospinal circuits in mouse focal ALS models.
Tsuboguchi S, Nakamura Y, Ishihara T, Kato T, Sato T, Koyama A, Mori H, Koike Y, Onodera O, Ueno M.
Acta Neuropathol 146: 611-629, 2023
Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord.
Nakamura Y, Kurabe M, Matsumoto M, Sato T, Miyashita S, Hoshina K, Kamiya Y, Tainaka K, Matsuzawa H, Ohno N, Ueno M.
eLife 12: e83108, 2023
https://elifesciences.org/articles/83108
Temporal dynamics of brain BDNF expression following a single bout of exercise: A bioluminescence imaging study.
Inoue T, Ikegami R, Takamatsu Y, Fukuchi M, Haga S, Ozaki M, Maejima H.
Neurosci Lett 799: 137120, 2023
脊髄損傷にともなう自律神経の病態と回路再建
上野将紀
田中貴士 ,浦大樹,前田拓哉,柳田寧々,三次恭平,古木ほたる, 上野将紀
基礎理学療法学.26(1):11-20, 2023
中枢神経の障害にともなう皮質脊髄路の再編
井上貴博 , 上野将紀
神経心理学.39(1): 30–9, 2023
運動が支える脳の健康
井上貴博
Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord.
Nakamura Y, Kurabe M, Matsumoto M, Sato T, Miyashita S, Hoshina K, Kamiya Y, Tainaka K, Matsuzawa H, Ohno N, Ueno M.
bioRxiv, 2022
https://www.biorxiv.org/content/10.1101/2022.08.15.501844v1
Epigenetic upregulation of Schlafen11 renders WNT- and SHH-activated meduloblastomas sensitive to cisplatin.
Nakata S, Murai J, Okada M, Takahashi H, Findlay TH, Malebranche K, Parthasarathy A, Miyashita S, Gabdulkhaev R, Benkimoun I, Druillennec S, Chabi S, Hawkins E, Miyahara H, Tateishi K, Yamashita S, Yamada S, Saito T, On J, Watanabe J, Tsukamoto Y, Yoshimura J, Oishi M, Nakano T, Imamura M, Imai C, Yamamoto T, Takeshima H, Sasaki AT, Rodriguez FJ, Nobusawa S, Varlet P, Pouponnot C, Osuka S, Pommier Y, Kakita A, Fujii Y, Raabe EH, Eberhart CG, Natsumeda M.
Neuro-oncology 25(5):899-912, 2023
Transit amplifying progenitors in the cerebellum: similarities to and differences from transit amplifying cells in other brain regions and between species.
*Miyashita S, Hoshino M.
Cells 11(4): 726, 2022
脳・脊髄障害後の神経回路再編の可視化
佐藤時春 , 上野将紀
Clinical Neuroscience.40(6): 746–9, 2022
リハビリテーションと分子標的の併用による脳損傷後の機能回復
田中貴士,上野将紀
基礎理学療法学.25(1): 43–9, 2022
Modulation of both intrinsic and extrinsic factors additively promotes rewiring of corticospinal circuits after spinal cord injury.
#Nakamura Y, *#Ueno M, Niehaus JK, Lang RA, Zheng Y, Yoshida Y.
J Neurosci 41(50): 10247-60, 2021
Lesion area in the cerebral cortex determines the patterns of axon rewiring of motor and sensory corticospinal tracts after stroke.
#Sato T, #Nakamura Y, Takeda A, *Ueno M.
Front Neurosci 15: 737034, 2021
https://www.frontiersin.org/articles/10.3389/fnins.2021.737034/full
Restoring neuro-immune circuitry after brain and spinal cord injuries.
*Ueno M.
Int Immunol 33(6): 311-325, 2021
https://academic.oup.com/HTThttps://academic.oup.com/intimm/article/33/6/311/6225797
中枢神経障害による免疫系の変容
上野将紀
中枢神経の障害がもたらす免疫系の変容と病態
上野将紀
生体の科学.72(5): 409–11, 2021
2020
Netrin-G1 regulates microglial accumulation along axons and supports the survival of layer V neurons in the postnatal mouse brain.
Fujita Y, Nakanishi T, Ueno M, Itohara S, Yamashita T.
Cell Rep 31(4): 107580, 2020
Inhibition of HDAC increases BDNF expression and promotes neuronal rewiring and functional recovery after brain injury.
Sada N, Fujita Y, Mizuta N, Ueno M, Furukawa T, Yamashita T.
Cell Death Dis 11: 655, 2020
Olig2-induced semaphorin expression drives corticospinal axon retraction after spinal cord injury.
*#Ueno M, #Nakamura Y, Nakagawa H, Niehaus JK, Maezawa M, Gu Z, Kumanogoh A, Takebayashi H, Lu QR, Takada M, Yoshida Y.
Cereb Cortex 30(11): 5702-5716, 2020
Ghrelin-insulin-like growth factor-1 axis is activated via autonomic neural circuits in the non-alcoholic fatty liver disease.
Nagoya T, Kamimura K, Inoue R, Ko M, Owaki T, Niwa Y, Sakai N, Setsu T, Sakamaki A, Yokoo T, Kamimura H, Nakamura Y, Ueno M, Terai S.
Neurogastroenterol Motil 32(5): e13799, 2020
Combinational approach of genetic SHP-1 suppression and voluntary exercise promotes corticospinal tract sprouting and motor recovery following brain injury.
Tanaka T, Ito T, Sumizono M, Ono M, Kato N, Honma S, Ueno M.
Neurorehabil Neural Repair 34(6): 558-70, 2020
Direct comparison of odor responses of homologous glomeruli in the medial and lateral maps of the mouse olfactory bulb.
Sato T, Homma R, Nagayama S.
eNeuro 0449-19, 2020
動きを生み出す脳の仕組みと謎
上野将紀
中枢神経障害による神経回路の再編と機能回復
上野将紀
新潟医学会雑誌.134(1): 7–12, 2020
随意運動をになう神経回路の再建 〜基礎研究の現状と課題〜
上野将紀
新潟県医師会報.842: 2–7, 2020
2019
Skilled movements in mice require inhibition of corticospinal axon collateral formation in the spinal cord by semaphorin signaling.
Gu Z, Ueno M, Klinefelter K, Mamidi M, Yagi T, Yoshida Y.
J Neurosci 39: 8885-99, 2019
Dual functions of microglia in the formation and refinement of neural circuits during development.
Konishi H, Kiyama H, *Ueno M.
Int J Dev Neurosci 77: 18-25, 2019
脊髄損傷と自律神経-臓器-免疫連関
上野将紀
2018
Corticospinal circuits from the sensory and motor cortices differentially regulate skilled movements through distinct spinal interneurons.
*Ueno M, Nakamura Y, Li J, Gu Z, Niehaus J, Maezawa M, Crone SA, Goulding M, Baccei ML, Yoshida Y.
Cell Reports 23: 1286-1300, 2018
https://www.sciencedirect.com/science/article/pii/S2211124718305254?via%3Dihub
新潟日報朝刊(2018年5月15日)、科学新聞(2018年5月25日)に掲載
MARCKSL1 regulates spine formation in the amygdala and controls the hypothalamic-pituitary-adrenal axis and anxiety-like behaviors.
Tanaka T, Shimizu S, Ueno M, Fujihara Y, Ikawa M, Miyata S.
EBioMedicine 30: 62-73, 2018
脳・脊髄の障害による神経‒免疫制御システムの破綻
上野将紀
Control of species-dependent cortico-motoneuronal connections underlying manual dexterity.
Gu Z, Kalambogias J, Yoshioka S, Han W, Li Z, Imamura Kawasawa Y, Pochareddy S, Li Z, Liu F, Xu X, Wijeratne SHR, Ueno M, Blatz E, Salomone J, Kumanogoh A, Rasin MR, Gebelein B, Weirauch MT, Sestan N, Martin JH, Yoshida Y.
Science 357(6349): 400-4, 2017
Skilled movements require non-apoptotic Bax/Bak pathway-mediated corticospinal circuit reorganization.
Gu Z, Serradj N, Ueno M, Liang M, Li J, Baccei ML, Martin JH, Yoshida Y.
Neuron 94(3): 626–41, 2017
障害による神経回路の再編と機能の回復
上野将紀
ライフサイエンス領域融合レビュー.大学共同利用機関法人 情報・システム研究機構 ライフサイエンス統合データベースセンター.6, e003, 2017
ミクログリアと脳発達
上野将紀
Brain and Nerve.医学書院.69(9):985-97, 2017
2016
Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury.
Ueno M, Ueno-Nakamura Y, Niehaus J, Popovich PG, Yoshida Y.
Nat Neurosci. 19(6):784-7, 2016
実験医学(羊土社)、にて紹介
脊髄損傷後の自律神経回路の再編成による免疫機能低下のメカニズム
上野将紀、Phillip Popovich、吉田富
実験医学.羊土社.34(14), 2328-31, 2016
2015
The brain-immune network in spinal cord injury.
*Ueno M, Yamashita T.
Neurodegenerative Disorder as Systematic Diseases. Wada K (Ed.), Springer, 41–66, 2015
2014
A selector orchestrates cortical function.
Ueno M, Fujiki R, Yamashita T.
Nat Neurosci. 17(8):1016-7, 2014
Bidirectional tuning of microglia in the developing brain: from neurogenesis to neural circuit formation.
*Ueno M, Yamashita T.
Curr Opin Neurobiol. 27C 8-15, 2014
2013
Layer V cortical neurons require microglial support for survival during postnatal development.
*Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T.
Nat Neurosci. 16(5): 543-551, 2013
Thomson Reuters社Web of ScienceにてHighly Cited Paper
Bilateral movement training promotes axonal remodeling of the corticospinal tract and recovery of motor function following traumatic brain injury in mice.
Nakagawa H, Ueno M, Itokazu T, Yamashita T.
Cell Death Dis. 4: e534, 2013
Suppression of SHP-1 promotes corticospinal tract sprouting and functional recovery after brain injury.
Tanaka T, Fujita Y, Ueno M, Shultz LD, Yamashita T.
Cell Death Dis. 4: e567, 2013
IFN-γ-dependent secretion of IL-10 from Th1 cells and microglia/macrophages contributes to functional recovery after spinal cord injury.
Ishii H, Tanabe S, Ueno M, Kubo T, Kayama H, Serada S, Fujimoto M, Takeda K, Naka T, Yamashita T.
Cell Death Dis. 4 e710, 2013
Soluble β-amyloid precursor protein alpha binds to p75 neurotrophin receptor to promote neurite outgrowth.
Hasebe N, Fujita Y, Ueno M, Yoshimura K, Fujino Y, Yamashita T.
PLoS One. 8 e82321, 2013
脳発達期においてミクログリアは大脳皮質第5層神経細胞の生存に寄与する.
上野将紀、藤田幸、山下俊英:
研コミュ白書 第9回 UC-Tomorrow: シンシナティから発する明日のサイエンスへの光―遥かなる上を目指して―.
山田宗茂、合山進、上野将紀、佐々木敦朗.
細胞工学.学研メディカル秀潤社.32(11) 1174-7, 2013
2012
Intraspinal rewiring of the corticospinal tract requires target-derived BDNF and compensates lost function after brain injury.
Ueno M, Hayano Y, Nakagawa, H, Yamashita T.
Brain.135(4): 1253-67, 2012
NHKテレビ「おはよう関西」にて紹介(2012年4月3日)
時事通信(2012年4月2日)、読売新聞朝刊(2012年4月4日)に掲載
Adoptive transfer of Th1-conditioned lymphocytes promotes axonal remodeling and functional recovery after spinal cord injury.
Ishii H, Jin X, Ueno M, Tanabe S, Kubo T, Serada S, Naka T, Yamashita T.
Cell Death Dis. 3: e363, 2012
Activated microglia inhibit axonal growth through RGMa.
Kitayama M, Ueno M, Itakura T, Yamashita T.
PLoS One. 6(9): e25234, 2011.
2011
Kinematic analyses reveal impaired locomotion following injury of the motor cortex in mice.
*Ueno M, Yamashita T.
Exp Neurol. 230(2): 280-90, 2011
Paired immunoglobulin-like receptor B knockout does not enhance axonal regeneration or locomotor recovery after spinal cord injury.
Nakamura Y, Fujita Y, Ueno M, Takai T, Yamashita T.
J Biol Chem. 286(3): 1876-83, 2011
Axonal remodeling for motor recovery after traumatic brain injury requires downregulation of g-aminobutyric acid signaling.
Lee S, Ueno M, Yamashita T.
Cell Death Dis. 2: e133, 2011
Dynamic spatiotemporal gene expression in embryonic mouse thalamus.
Suzuki-Hirano A, Ogawa M, Kataoka A, Yoshida AC, Itoh D, Ueno M, Blackshaw S, Shimogori T.
J Comp Neurol. 519(3): 528-43, 2011
Corticospinal tract fibers cross the ephrin-B3-negative part of the midline of the spinal cord after brain injury.
Omoto S, Ueno M, Mochio S, Takai T, Yamashita T.
Neurosci Res. 69(3):187-95, 2011
C-Jun N-terminal kinase induces axonal degeneration and limits motor recovery after spinal cord injury in mice.
Yoshimura K, *Ueno M, Lee S, Nakamura Y, Sato A, Yoshimura K, Kishima H, Yoshimine T, Yamashita T.
Neurosci Res. 71(3): 266-77, 2011
RhoA activation and effect of Rho-kinase inhibitor in the development of retinal neovascularization in a mouse model of oxygen-induced retinopathy.
Fang X, Ueno M, Yamashita T, Ikuno Y.
Curr Eye Res. 36(11): 1028-36, 2011
2010
Genetic deletion of paired immunoglobulin-like receptor B does not promote axonal plasticity or functional recovery after traumatic brain injury.
Omoto S, Ueno M, Mochio S, Takai T, Yamashita T.
J Neurosci. 30(39): 13045-52, 2010
Expression of galectin-1 in immune cells and glial cells after spinal cord injury.
Kurihara D, Ueno M, Tanaka T, Yamashita T.
Neurosci Res. 66(3): 265-270, 2010
Olfactory mucosa transplantation following spinal cord injury improves voiding efficiency by suppressing detrusor sphincter dyssynergia in rats.
Nakayama J, Takao T, Kiuchi H, Yamamoto K, Fukuhara S, MiyagawaY, Aoki M, Iwatsuki K, Yoshimine T, Ueno M, Yamashita T, Nonomura N, Tsujimura A, Okuyama A.
J Urol. 184(2): 775-82, 2010
Transplantation of whole-layer olfactory mucosa promotes restricted functional recovery in rats with complete spinal cord injury.
Aoki M, Kishima H, Yoshimura Y, Ishihara M, Ueno M, Hata K, Yamashita T, Iwatsuki K, Yoshimine T.
J Neurosurg: Spine. 12(2): 122-30, 2010
2009
Engulfment of axon debris by microglia requires p38 MAPK activity.
Tanaka T, Ueno M, Yamashita T.
J Biol Chem. 284(32): 21626-36, 2009
Etoposide induces TRP53-dependent apoptosis and TRP53-independent cell-cycle arrest in trophoblasts of the developing mouse placenta.
Yamauchi H, Katayama KI, Ueno M, Kanemitsu H, Nam C, Mikami T, Saito A, Ishida Y, Uetsuka K, Doi K, Ohmach Y, Nakayama H.
Biol Reprod. 80(4): 813-22, 2009
Intrinsic regenerative mechanisms of central nervous system neurons.
Muramatsu R, Ueno M, Yamashita T.
Biosci Trends. 3(5): 179-183, 2009
2008
Regulation of axonal elongation and pathfinding from the entorhinal cortex to the dentate gyrus in the hippocampus by the chemokine stromal cell-derived factor 1a.
Ohshima Y, Kubo T, Koyama R, Ueno M, Nakagawa M, Yamashita, T.
J Neurosci. 28(33): 8344-53, 2008
Strategies for regenerating injured axons after spinal cord injury-insights from brain development.
*Ueno M, and Yamashita T.
Biologics. 2(2): 253-64, 2008
2007
Essential role of p53 in trophoblastic apoptosis induced in the developing rodent placenta by treatment with a DNA-damaging agent.
Yamauchi H, Katayama K, Ueno M, He XJ, Mikami T, Uetsuka K, Doi K, Nakayama H.
Apoptosis. 12(10): 1743-54, 2007
Gene expression profiles of drug-metabolizing enzymes (DMEs) in rat liver during pregnancy and lactation.
He XJ, Yamauchi H, Suzuki K, Ueno M, Nakayama H, Doi K.
Exp Mol Pathol. 83(3): 428-34, 2007
2006
Cell cycle and cell death regulation of neural progenitor cells in the 5-azacytidine (5AzC)-treated developing fetal brain.
*Ueno M, Katayama K, Yamauchi H, Nakayama H, Doi K.
Exp Neurol. 198(1): 154-66, 2006
Repair process of fetal brain after 5-azacytidine-induced damage.
*Ueno M, Katayama K, Yamauchi H, Yasoshima A, Nakayama H, Doi K.
Eur J Neurosci. 24(10): 2758-68, 2006
Cell cycle progression is required for nuclear migration of neural progenitor cells.
*Ueno M, Katayama K, Yamauchi H, Nakayama H, Doi K.
Brain Res. 1088(1): 57-67, 2006
総説Ann Rev Neurosci 32: 149-84 (2009), Neuron 67: 906-14 (2010)
教科書「脳の発生学:ニューロンの誕生・分化・回路形成(化学同人社2013)」 等にて引用.
Evidence of apoptosis in the subventricular zone and rostral migratory stream in the MPTP mouse model of Parkinson disease.
He XJ, Nakayama H, Dong M, Yamauchi H, Ueno M, Uetsuka K, Doi K.
J Neuropathol Exp Neurol. 65(9): 873-82, 2006
2005
Ethylnitrosourea induces neural progenitor cell apoptosis after S-phase accumulation in a p53-dependent manner.
Katayama K, Ueno M, Yamauchi H, Nagata T, Nakayama H, Doi K.
Neurobiol Dis. 18(1): 218-25, 2005
Microarray analysis of genes in fetal central nervous system after ethylnitrosourea administration.
Katayama K, Ueno M, Yamauchi H, Nakayama H, Doi K.
Birth Defects Res B Dev Reprod Toxicol. 74(3): 255-60, 2005
2004
Involvement of p53 in 1-beta-D-arabinofuranosylcytosine-induced trophoblastic cell apoptosis and impaired proliferation in rat placenta.
Yamauchi H, Katayama K, Ueno M, Uetsuka K, Nakayama H, Doi K.
Biol Reprod. 70(6): 1762-7, 2004
Involvement of p53 in 1-beta-D-arabinofuranosylcytosine-induced rat fetal brain lesions.
Yamauchi H, Katayama K, Ueno M, Uetsuka K, Nakayama H, Doi K.
Neurotoxicol Teratol. 26(4): 579-86, 2004
Effects of prenatal hydroxyurea-treatment on mouse offspring.
Woo GH, Katayama K, Bak EJ, Ueno M, Yamauchi H, Uetsuka K, Nakayama H, Doi K.
Exp Toxicol Pathol. 56(1-2): 1-7, 2004
2002
Mechanisms of 5-azacytidine (5AzC)-induced toxicity in the rat foetal brain.
*Ueno M, Katayama K, Nakayama H, Doi K.
Int J Exp Pathol. 83(3): 139-50, 2002
5-Azacytidine (5AzC)-induced histopathological changes in the central nervous system of rat fetuses.
*Ueno M, Katayama K, Yasoshima A, Nakayama H, Doi K.
Exp Toxicol Pathol. 54(2): 91-6, 2002
Expression of ribosomal protein L4 (rpL4) during neurogenesis and 5-azacytidine (5AzC)-induced apoptotic process in the rat.
*Ueno M, Nakayama H, Kajikawa S, Katayama K, Suzuki K, Doi K.
Histol Histopathol. 17(3): 789-98, 2002
Ethylnitrosourea induces apoptosis and growth arrest in the trophoblastic cells of rat placenta.
Katayama K, Ueno M, Takai H, Ejiri N, Uetsuka K, Nakayama H, Doi K.
Biol Reprod. 67(2): 431-5, 2002
Ethylnitrosourea-induced apoptosis in primordial germ cells of the rat fetus.
Katayama K, Ueno M, Yamauchi H, Nakayama H, Doi K.
Exp Toxicol Pathol. 54(3): 193-6, 2002