2025
Scg2 drives reorganization of the corticospinal circuit with spinal premotor interneurons to recover motor function after stroke.
Sato T, Nakamura Y, Hoshina K, Inoue KI, Takada M, Yano M, Matsuzawa H, Ueno M.
bioRxiv 2025
https://www.biorxiv.org/content/10.1101/2025.01.21.634186v1
The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents.
Inoue T, Ueno M.
Front Neural Circuits 19: 1566562, 2025
https://www.frontiersin.org/journals/neural-circuits/articles/10.3389/fncir.2025.1566562/full
2024
CRISPR/CasRx suppresses KRAS-induced brain arteriovenous malformation developed in postnatal brain endothelial cells in mice.
Saito S, Nakamura Y, Miyashita S, Sato T, Hoshina K, Okada M, Hasegawa H, Oishi M, Fujii Y, Körbelin J, Kubota Y, Tainaka K, Natsumeda M, Ueno M.
JCI Insight 9: e179729, 2024
https://insight.jci.org/articles/view/179729
Rehabilitation to restore neural repair capacity in the aged brain.
Tanaka T, Ueno M.
Med Sci Dig 50(12): 602-604, 2024 (in Japanese)
Elucidating the neural network of cerebrospinal fluid-contacting neurons.
Nakamura Y, Ueno M.
Seitai No Kagaku 75(5): 406-7, 2024 (in Japanese)
Rewiring of the corticospinal circuit and the molecular mechanism after stroke.
Sato T, Ueno M.
Med Sci Dig 50(6): 48-50, 2024 (in Japanese)
Protein spreading in ALS: disease progression by TDP-43 in the motor circuits.
Tsuboguchi S, Onodera O, Ueno M.
Farumashia 60(5): 393-397, 2024 (in Japanese)
TDP-43 differentially propagates to induce antero- and retrograde degeneration in the corticospinal circuits in mouse focal ALS models.
Tsuboguchi S, Nakamura Y, Ishihara T, Kato T, Sato T, Koyama A, Mori H, Koike Y, Onodera O, Ueno M.
Acta Neuropathol 146: 611-629, 2023



Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord.
Nakamura Y, Kurabe M, Matsumoto M, Sato T, Miyashita S, Hoshina K, Kamiya Y, Tainaka K, Matsuzawa H, Ohno N, Ueno M.
eLife 12: e83108, 2023
https://elifesciences.org/articles/83108

Temporal dynamics of brain BDNF expression following a single bout of exercise: A bioluminescence imaging study.
Inoue T, Ikegami R, Takamatsu Y, Fukuchi M, Haga S, Ozaki M, Maejima H.
Neurosci Lett 799: 137120, 2023
Autonomic dysfunction and neural circuit rewiring in spinal cord injury.
Ueno M.
The Autonom Nerv Sys 60(3): 110-114, 2023 (in Japanese)
Voluntary running restores age-related loss of neural repair abitlities and circadian rhythms after brain injury.
Tanaka T, Ura H, Maeda T, Yanagita N, Mitsugi K, Koki H, Ueno M.
J Phys Ther Fund 26(1):11-20 2023 (in Japanese)
Selected as the best article in 2023
Cerebrospinal fluid-contacting neurons: spinal sensors of cerebrospinal fluid.
Nakamura Y, Ueno M.
The Cell 55(5): 32-6, 2023 (in Japanese)
Rewiring of corticospinal tract after central nervous system injuries.
Inoue T, Ueno M.
Jpn J Neuropsychol 39(1): 30-9, 2023 (in Japanese)
The exercise to support brain health.
Inoue T.
Nouken Column. 2023 (in Japanese)
2022
Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord.
Nakamura Y, Kurabe M, Matsumoto M, Sato T, Miyashita S, Hoshina K, Kamiya Y, Tainaka K, Matsuzawa H, Ohno N, Ueno M.
bioRxiv, 2022
https://www.biorxiv.org/content/10.1101/2022.08.15.501844v1
Epigenetic upregulation of Schlafen11 renders WNT- and SHH-activated meduloblastomas sensitive to cisplatin.
Nakata S, Murai J, Okada M, Takahashi H, Findlay TH, Malebranche K, Parthasarathy A, Miyashita S, Gabdulkhaev R, Benkimoun I, Druillennec S, Chabi S, Hawkins E, Miyahara H, Tateishi K, Yamashita S, Yamada S, Saito T, On J, Watanabe J, Tsukamoto Y, Yoshimura J, Oishi M, Nakano T, Imamura M, Imai C, Yamamoto T, Takeshima H, Sasaki AT, Rodriguez FJ, Nobusawa S, Varlet P, Pouponnot C, Osuka S, Pommier Y, Kakita A, Fujii Y, Raabe EH, Eberhart CG, Natsumeda M.
Neuro-oncology 25(5):899-912, 2023
Transit amplifying progenitors in the cerebellum: similarities to and differences from transit amplifying cells in other brain regions and between species.
*Miyashita S, Hoshino M.
Cells 11(4): 726, 2022
Visualization of neuronal rewiring in brain and spinal cord injury.
Sato T, Ueno M.
Clin Neurosci 40(6): 746–9, 2022 (in Japanese)
Rehabilitation and molecular targeting for functional recovery after brain injury.
Tanaka T, Ueno M.
J Physical Ther Fundament 2022 (in Japanese)
2021
Modulation of both intrinsic and extrinsic factors additively promotes rewiring of corticospinal circuits after spinal cord injury.
#Nakamura Y, *#Ueno M, Niehaus JK, Lang RA, Zheng Y, Yoshida Y.
J Neurosci 41(50): 10247-60, 2021
Lesion area in the cerebral cortex determines the patterns of axon rewiring of motor and sensory corticospinal tracts after stroke.
#Sato T, #Nakamura Y, Takeda A, *Ueno M.
Front Neurosci 15: 737034, 2021
https://www.frontiersin.org/articles/10.3389/fnins.2021.737034/full
Restoring neuro-immune circuitry after brain and spinal cord injuries.
*Ueno M.
Int Immunol 33(6): 311-325, 2021
https://academic.oup.com/HTThttps://academic.oup.com/intimm/article/33/6/311/6225797
Immune deficiency in the central nervous system injury.
Ueno M.
J Clin Exp Med (Igaku No Ayumi). 277(13): 1104–7, 2021 (in Japanese)
Immune deficiency and pathology in CNS injuries.
Ueno M.
Seitai No Kagaku. 72(5): 709–11, 2021 (in Japanese)
2020
Netrin-G1 regulates microglial accumulation along axons and supports the survival of layer V neurons in the postnatal mouse brain.
Fujita Y, Nakanishi T, Ueno M, Itohara S, Yamashita T.
Cell Rep 31(4): 107580, 2020
Inhibition of HDAC increases BDNF expression and promotes neuronal rewiring and functional recovery after brain injury.
Sada N, Fujita Y, Mizuta N, Ueno M, Furukawa T, Yamashita T.
Cell Death Dis 11: 655, 2020
Olig2-induced semaphorin expression drives corticospinal axon retraction after spinal cord injury.
*#Ueno M, #Nakamura Y, Nakagawa H, Niehaus JK, Maezawa M, Gu Z, Kumanogoh A, Takebayashi H, Lu QR, Takada M, Yoshida Y.
Cereb Cortex 30(11): 5702-5716, 2020
Ghrelin-insulin-like growth factor-1 axis is activated via autonomic neural circuits in the non-alcoholic fatty liver disease.
Nagoya T, Kamimura K, Inoue R, Ko M, Owaki T, Niwa Y, Sakai N, Setsu T, Sakamaki A, Yokoo T, Kamimura H, Nakamura Y, Ueno M, Terai S.
Neurogastroenterol Motil 32(5): e13799, 2020
Combinational approach of genetic SHP-1 suppression and voluntary exercise promotes corticospinal tract sprouting and motor recovery following brain injury.
Tanaka T, Ito T, Sumizono M, Ono M, Kato N, Honma S, Ueno M.
Neurorehabil Neural Repair 34(6): 558-70, 2020
Direct comparison of odor responses of homologous glomeruli in the medial and lateral maps of the mouse olfactory bulb.
Sato T, Homma R, Nagayama S.
eNeuro 0449-19, 2020
Mechanisms and mystery of motor behavior.
Ueno M.
Nouken Column. 2020 (in Japanese)
Restoring neural circuits and functions after CNS injuries.
Ueno M.
Niigata Med J. 134: 7–12, 2020 (in Japanese)
Reconstruction of neural circuits for voluntary movements –perspectives in basic research–.
Ueno M.
J Niigata Med Assoc. 842: 2–7, 2020 (in Japanese)
2019
Skilled movements in mice require inhibition of corticospinal axon collateral formation in the spinal cord by semaphorin signaling.
Gu Z, Ueno M, Klinefelter K, Mamidi M, Yagi T, Yoshida Y.
J Neurosci 39: 8885-99, 2019
Dual functions of microglia in the formation and refinement of neural circuits during development.
Konishi H, Kiyama H, *Ueno M.
Int J Dev Neurosci 77: 18-25, 2019
Brain, organs, and immune interaction in spinal cord injury.
Ueno M.
Experimental Medicine (Jikken Igaku). Yodosha. 37(13): 2122-8, 2019 (in Japanese)
2018
Corticospinal circuits from the sensory and motor cortices differentially regulate skilled movements through distinct spinal interneurons.
*Ueno M, Nakamura Y, Li J, Gu Z, Niehaus J, Maezawa M, Crone SA, Goulding M, Baccei ML, Yoshida Y.
Cell Rep 23: 1286-1300, 2018
https://www.sciencedirect.com/science/article/pii/S2211124718305254?via%3Dihub
Introduced in Niigata Nippo (May 15, 2018) and the Science News (May 25, 2018).
MARCKSL1 regulates spine formation in the amygdala and controls the hypothalamic-pituitary-adrenal axis and anxiety-like behaviors.
Tanaka T, Shimizu S, Ueno M, Fujihara Y, Ikawa M, Miyata S.
EBioMedicine 30: 62-73, 2018
Brain-immune interaction in CNS injuries.
Ueno M.
Experimental Medicine (Jikken Igaku). Yodosha. 36(3): 370-6, 2018 (in Japanese)
2017
Control of species-dependent cortico-motoneuronal connections underlying manual dexterity.
Gu Z, Kalambogias J, Yoshioka S, Han W, Li Z, Imamura Kawasawa Y, Pochareddy S, Li Z, Liu F, Xu X, Wijeratne SHR, Ueno M, Blatz E, Salomone J, Kumanogoh A, Rasin MR, Gebelein B, Weirauch MT, Sestan N, Martin JH, Yoshida Y.
Science 357(6349): 400-4, 2017
Skilled movements require non-apoptotic Bax/Bak pathway-mediated corticospinal circuit reorganization.
Gu Z, Serradj N, Ueno M, Liang M, Li J, Baccei ML, Martin JH, Yoshida Y.
Neuron 94(3): 626–41, 2017
Rewiring of neural circuits and functional recovery following brain and spinal cord injuries.
Ueno M.
Leading Author's (Lifescience Ryoiki Yugo Review). DBCLS. 6, e003, 2017 (in Japanese) Detail
Ueno M.
Brain and Nerve. Igaku Shoin. 69(9):985-97, 2017 (in Japanese)

2016
Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury.
Ueno M, Ueno-Nakamura Y, Niehaus J, Popovich PG, Yoshida Y.
Nat Neurosci. 19(6):784-7, 2016
Introduced in Jikken Igaku

Rewiring of sympathetic circuitry and immune suppression after spinal cord injury.
Ueno M, Popovich PG, Yoshida Y
Experimental Medicine (Jikken Igaku).Yodosha.34(14), 2328-31, 2016 (in Japanese)
2015
The brain-immune network in spinal cord injury.
*Ueno M, Yamashita T.
Neurodegenerative Disorder as Systematic Diseases. Wada K (Ed.), Springer, 41–66, 2015
2014
A selector orchestrates cortical function.
Ueno M, Fujiki R, Yamashita T.
Nat Neurosci. 17(8):1016-7, 2014
Bidirectional tuning of microglia in the developing brain: from neurogenesis to neural circuit formation.
*Ueno M, Yamashita T.
Curr Opin Neurobiol. 27C 8-15, 2014
2013
Layer V cortical neurons require microglial support for survival during postnatal development.
*Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T.
Nat Neurosci. 16(5): 543-551, 2013
Highly Cited Paper in Web of Science (Thomson Reuters)


Bilateral movement training promotes axonal remodeling of the corticospinal tract and recovery of motor function following traumatic brain injury in mice.
Nakagawa H, Ueno M, Itokazu T, Yamashita T.
Cell Death Dis. 4: e534, 2013
Suppression of SHP-1 promotes corticospinal tract sprouting and functional recovery after brain injury.
Tanaka T, Fujita Y, Ueno M, Shultz LD, Yamashita T.
Cell Death Dis. 4: e567, 2013
IFN-γ-dependent secretion of IL-10 from Th1 cells and microglia/macrophages contributes to functional recovery after spinal cord injury.
Ishii H, Tanabe S, Ueno M, Kubo T, Kayama H, Serada S, Fujimoto M, Takeda K, Naka T, Yamashita T.
Cell Death Dis. 4 e710, 2013
Soluble β-amyloid precursor protein alpha binds to p75 neurotrophin receptor to promote neurite outgrowth.
Hasebe N, Fujita Y, Ueno M, Yoshimura K, Fujino Y, Yamashita T.
PLoS One. 8 e82321, 2013
Ueno M, Fujita Y, Yamashita T.
Lifescience Review.2013 (in Japanese)

9th Research community: UC-Tomorrow ~ science from Cincinnati.
Yamada N, Goyama S, Ueno M, Sasaki AT.
Saibo Kogaku. Gakken Medical Shujunsha. 32(11) 1174-7, 2013 (in Japanese)
2012
Intraspinal rewiring of the corticospinal tract requires target-derived BDNF and compensates lost function after brain injury.
Ueno M, Hayano Y, Nakagawa, H, Yamashita T.
Brain.135(4): 1253-67, 2012
Introduced in NHK TV news "Ohayo Kansai" (April 3, 2012)
Introduced in Jiji Press (April 2, 2012), Yomiuri shimbun (April 4, 2012)


Adoptive transfer of Th1-conditioned lymphocytes promotes axonal remodeling and functional recovery after spinal cord injury.
Ishii H, Jin X, Ueno M, Tanabe S, Kubo T, Serada S, Naka T, Yamashita T.
Cell Death Dis. 3: e363, 2012
Activated microglia inhibit axonal growth through RGMa.
Kitayama M, Ueno M, Itakura T, Yamashita T.
PLoS One. 6(9): e25234, 2011.
2011
Kinematic analyses reveal impaired locomotion following injury of the motor cortex in mice.
*Ueno M, Yamashita T.
Exp Neurol. 230(2): 280-90, 2011
Paired immunoglobulin-like receptor B knockout does not enhance axonal regeneration or locomotor recovery after spinal cord injury.
Nakamura Y, Fujita Y, Ueno M, Takai T, Yamashita T.
J Biol Chem. 286(3): 1876-83, 2011
Axonal remodeling for motor recovery after traumatic brain injury requires downregulation of g-aminobutyric acid signaling.
Lee S, Ueno M, Yamashita T.
Cell Death Dis. 2: e133, 2011
Dynamic spatiotemporal gene expression in embryonic mouse thalamus.
Suzuki-Hirano A, Ogawa M, Kataoka A, Yoshida AC, Itoh D, Ueno M, Blackshaw S, Shimogori T.
J Comp Neurol. 519(3): 528-43, 2011
Corticospinal tract fibers cross the ephrin-B3-negative part of the midline of the spinal cord after brain injury.
Omoto S, Ueno M, Mochio S, Takai T, Yamashita T.
Neurosci Res. 69(3):187-95, 2011
C-Jun N-terminal kinase induces axonal degeneration and limits motor recovery after spinal cord injury in mice.
Yoshimura K, *Ueno M, Lee S, Nakamura Y, Sato A, Yoshimura K, Kishima H, Yoshimine T, Yamashita T.
Neurosci Res. 71(3): 266-77, 2011
RhoA activation and effect of Rho-kinase inhibitor in the development of retinal neovascularization in a mouse model of oxygen-induced retinopathy.
Fang X, Ueno M, Yamashita T, Ikuno Y.
Curr Eye Res. 36(11): 1028-36, 2011
2010
Genetic deletion of paired immunoglobulin-like receptor B does not promote axonal plasticity or functional recovery after traumatic brain injury.
Omoto S, Ueno M, Mochio S, Takai T, Yamashita T.
J Neurosci. 30(39): 13045-52, 2010
Expression of galectin-1 in immune cells and glial cells after spinal cord injury.
Kurihara D, Ueno M, Tanaka T, Yamashita T.
Neurosci Res. 66(3): 265-270, 2010
Olfactory mucosa transplantation following spinal cord injury improves voiding efficiency by suppressing detrusor sphincter dyssynergia in rats.
Nakayama J, Takao T, Kiuchi H, Yamamoto K, Fukuhara S, MiyagawaY, Aoki M, Iwatsuki K, Yoshimine T, Ueno M, Yamashita T, Nonomura N, Tsujimura A, Okuyama A.
J Urol. 184(2): 775-82, 2010
Transplantation of whole-layer olfactory mucosa promotes restricted functional recovery in rats with complete spinal cord injury.
Aoki M, Kishima H, Yoshimura Y, Ishihara M, Ueno M, Hata K, Yamashita T, Iwatsuki K, Yoshimine T.
J Neurosurg: Spine. 12(2): 122-30, 2010
2009
Engulfment of axon debris by microglia requires p38 MAPK activity.
Tanaka T, Ueno M, Yamashita T.
J Biol Chem. 284(32): 21626-36, 2009
Etoposide induces TRP53-dependent apoptosis and TRP53-independent cell-cycle arrest in trophoblasts of the developing mouse placenta.
Yamauchi H, Katayama KI, Ueno M, Kanemitsu H, Nam C, Mikami T, Saito A, Ishida Y, Uetsuka K, Doi K, Ohmach Y, Nakayama H.
Biol Reprod. 80(4): 813-22, 2009
Intrinsic regenerative mechanisms of central nervous system neurons.
Muramatsu R, Ueno M, Yamashita T.
Biosci Trends. 3(5): 179-183, 2009
2008
Regulation of axonal elongation and pathfinding from the entorhinal cortex to the dentate gyrus in the hippocampus by the chemokine stromal cell-derived factor 1a.
Ohshima Y, Kubo T, Koyama R, Ueno M, Nakagawa M, Yamashita, T.
J Neurosci. 28(33): 8344-53, 2008
Strategies for regenerating injured axons after spinal cord injury-insights from brain development.
*Ueno M, and Yamashita T.
Biologics. 2(2): 253-64, 2008
2007
Essential role of p53 in trophoblastic apoptosis induced in the developing rodent placenta by treatment with a DNA-damaging agent.
Yamauchi H, Katayama K, Ueno M, He XJ, Mikami T, Uetsuka K, Doi K, Nakayama H.
Apoptosis. 12(10): 1743-54, 2007
Gene expression profiles of drug-metabolizing enzymes (DMEs) in rat liver during pregnancy and lactation.
He XJ, Yamauchi H, Suzuki K, Ueno M, Nakayama H, Doi K.
Exp Mol Pathol. 83(3): 428-34, 2007
2006
Cell cycle and cell death regulation of neural progenitor cells in the 5-azacytidine (5AzC)-treated developing fetal brain.
*Ueno M, Katayama K, Yamauchi H, Nakayama H, Doi K.
Exp Neurol. 198(1): 154-66, 2006
Repair process of fetal brain after 5-azacytidine-induced damage.
*Ueno M, Katayama K, Yamauchi H, Yasoshima A, Nakayama H, Doi K.
Eur J Neurosci. 24(10): 2758-68, 2006
Cell cycle progression is required for nuclear migration of neural progenitor cells.
*Ueno M, Katayama K, Yamauchi H, Nakayama H, Doi K.
Brain Res. 1088(1): 57-67, 2006
Cited in Ann Rev Neurosci 32: 149-84 (2009), Neuron 67: 906-14 (2010)
Cited in the text book "Brain Development", Kagaku dojin, 2013 (in Japanese)
Evidence of apoptosis in the subventricular zone and rostral migratory stream in the MPTP mouse model of Parkinson disease.
He XJ, Nakayama H, Dong M, Yamauchi H, Ueno M, Uetsuka K, Doi K.
J Neuropathol Exp Neurol. 65(9): 873-82, 2006
2005
Ethylnitrosourea induces neural progenitor cell apoptosis after S-phase accumulation in a p53-dependent manner.
Katayama K, Ueno M, Yamauchi H, Nagata T, Nakayama H, Doi K.
Neurobiol Dis. 18(1): 218-25, 2005
Microarray analysis of genes in fetal central nervous system after ethylnitrosourea administration.
Katayama K, Ueno M, Yamauchi H, Nakayama H, Doi K.
Birth Defects Res B Dev Reprod Toxicol. 74(3): 255-60, 2005
2004
Involvement of p53 in 1-beta-D-arabinofuranosylcytosine-induced trophoblastic cell apoptosis and impaired proliferation in rat placenta.
Yamauchi H, Katayama K, Ueno M, Uetsuka K, Nakayama H, Doi K.
Biol Reprod. 70(6): 1762-7, 2004
Involvement of p53 in 1-beta-D-arabinofuranosylcytosine-induced rat fetal brain lesions.
Yamauchi H, Katayama K, Ueno M, Uetsuka K, Nakayama H, Doi K.
Neurotoxicol Teratol. 26(4): 579-86, 2004
Effects of prenatal hydroxyurea-treatment on mouse offspring.
Woo GH, Katayama K, Bak EJ, Ueno M, Yamauchi H, Uetsuka K, Nakayama H, Doi K.
Exp Toxicol Pathol. 56(1-2): 1-7, 2004
2002
Mechanisms of 5-azacytidine (5AzC)-induced toxicity in the rat foetal brain.
*Ueno M, Katayama K, Nakayama H, Doi K.
Int J Exp Pathol. 83(3): 139-50, 2002
5-Azacytidine (5AzC)-induced histopathological changes in the central nervous system of rat fetuses.
*Ueno M, Katayama K, Yasoshima A, Nakayama H, Doi K.
Exp Toxicol Pathol. 54(2): 91-6, 2002
Expression of ribosomal protein L4 (rpL4) during neurogenesis and 5-azacytidine (5AzC)-induced apoptotic process in the rat.
*Ueno M, Nakayama H, Kajikawa S, Katayama K, Suzuki K, Doi K.
Histol Histopathol. 17(3): 789-98, 2002
Ethylnitrosourea induces apoptosis and growth arrest in the trophoblastic cells of rat placenta.
Katayama K, Ueno M, Takai H, Ejiri N, Uetsuka K, Nakayama H, Doi K.
Biol Reprod. 67(2): 431-5, 2002
Ethylnitrosourea-induced apoptosis in primordial germ cells of the rat fetus.
Katayama K, Ueno M, Yamauchi H, Nakayama H, Doi K.
Exp Toxicol Pathol. 54(3): 193-6, 2002