Neuronal differentiation associated with Gli3 expression predicts favorable outcome for patients with medulloblastoma

Hiroaki Miyahara,1,3 Manabu Natsumeda,2 Junichi Yoshimura,2 Ryosuke Ogura,2 Kenichi Okazaki,1 Yasuko Toyoshima,1 Yukihiko Fujii,2 Hitoshi Takahashi1 and Akiyoshi Kakita1

Departments of 1Pathology and 2Neurosurgery, Brain Research Institute, University of Niigata, Niigata and 3Department of Pediatrics and Child Neurology, Oita University Faculty of Medicine, Oita, Japan

Medulloblastoma (MB) is a malignant cerebellar tumor arising in children, and its ontogenesis is regulated by Sonic Hedgehog (Shh) signaling. No data are available regarding the correlation between expression of Gli3, a protein lying downstream of Shh, and neuronal differentiation of MB cells, or the prognostic significance of these features. We re-evaluated the histopathological features of surgical specimens of MB taken from 32 patients, and defined 15 of them as MB with neuronal differentiation (ND), three as MB with both glial and neuronal differentiation (GD), and 14 as differentiation-free (DF) MB. Gli3-immunoreactivity (IR) was evident as a clear circular stain outlining the nuclei of the tumor cells. The difference in the frequency of IR between the ND+GD (94.4%) and DF (0%) groups was significant ($P < 0.001$). The tumor cells with ND showed IR for both Gli3 and neuronal nuclei. Ultrastructurally, Gli3-IR was observed at the nuclear membrane. The overall survival and event-free survival rates of the patients in the ND group were significantly higher than those in the other groups. The expression profile of Gli3 is of considerable significance, and the association of ND with this feature may be prognostically favorable in patients with MB.

Key words: desmoplastic/nodular, Gli3, medulloblastoma, neuronal differentiation, prognosis, sonic hedgehog.

INTRODUCTION

Medulloblastoma (MB) is a malignant, invasive tumor of the cerebellum, predominantly affecting children. According to the WHO classification of CNS tumors,1 MB corresponds to grade IV, and is subdivided histopathologically into four types: classic MB (CMB), desmoplastic/nodular MB (DNMB), MB with extensive nodularity (MBEN), and anaplastic/large cell MB. Several clinicopathological studies have provided evidence that the prognosis of patients with MB depends on the histological tumor type. For example, the survival period for patients with anaplastic/large cell MB is shorter than that for patients with CMB.2–7 Patients with MBEN are expected to have a better outcome than patients with other types.8,9 On the other hand, it is still unclear whether DNMB-type histology predicts a favorable outcome. Several investigations have indicated that patients with DNMB survive longer than those with CMB;10–16 however, others have provided evidence to the contrary.16,17

A recent breakthrough in understanding the pathomechanisms of MB has been the discovery of the Sonic Hedgehog (Shh) signaling pathway. Shh is considered to regulate growth and patterning during development of the cerebellum,18 and plays an essential role in the tumorigenesis of a subset of MB.19,20 Moreover, Shh plays an integral role in a wide variety of developmental processes in vertebrates, and in the development of carcinomas in various organs (Fig. 1A,B). The Shh ligand binds to patched (PTCH) receptors, and inhibits activity against Smoothened on the cytoplasmic membrane. In the on-state, Gli1 and Gli2, the Gli activators in mammals, are produced in the cytoplasm and transported into the nucleus, where various target oncogenes against Shh,
including Cyclin D, Cyclin E, Myc, Gli1 and PTCH, are transcribed (Fig. 1B). In the off-state, by contrast, a Gli repressor, Gli3, is produced in the cytoplasm and transported into the nucleus, where Gli3-Rep inhibits the transcription of target oncogenes and promotes normal differentiation (Fig. 1A).

It is still unclear whether the expression of the Shh signaling pathway influences the differentiation of MB cells, and consequently affects the outcome of patients with MB. The present study attempted to determine whether expression of Gli3 contributes to neuronal differentiation of the tumor cells and to a favorable outcome for patients with MB.

MATERIALS AND METHODS

Patients

We reviewed the medical records of 32 consecutive patients (19 males, 13 females; age at onset, mean ± SD = 9.7 ± 5.8 years) with pathologically confirmed MB who were referred to the Brain Research Institute, University of Niigata, Japan, between 1982 and 2010. All the patients had undergone maximum possible tumor resection, followed by 30.6 to 36.0 Gy of craniospinal irradiation with a 18.0–23.4 Gy posterior fossa boost. Patients (n = 6: five male, one female; age 8.2 ± 7.2 years) who were admitted to our hospital between 1982 and 1991 had received radiotherapy only. On the other hand, a large proportion of the patients included in the present study (n = 23: 12 males, 11 females; age 9.8 ± 4.8 years), who were admitted between 1992 and 2007, had undergone radiotherapy followed by adjuvant chemotherapy with regimens of carboplatin and either etoposide or ifosfamide, but otherwise in combination with cisplatin and etoposide. In the more recent period between 2008 and 2010, patients (n = 3: two male, one female; age 12.4 ± 10.5 years) had undergone radiotherapy, high-dose chemotherapy with cisplatin, cyclophosphamide and vincristine, and peripheral blood stem cell transplantation. A summary of the clinical profiles of the patients, including age at onset, sex, risk evaluation factors as proposed by Laurent et al., tumor location, and post-surgical radiochemotherapy regimens, is shown in Table 1. None of the patients had a family history of neurological diseases or specific carcinomas.

CMB showed a sheet-like arrangement of densely packed cells with round-to-oval or carrot-shaped hyperchromatic nuclei surrounded by scant cytoplasm (Fig. 2A). DNMB was characterized by a nodular arrangement of highly proliferative cells with hyperchromatic nuclei (Fig. 2B), and intercellular reticulin fiber networks. Twenty-two patients (14 male, eight female; age 10.5 ± 6.1 years) and 10 patients (five male, five female; age 8.1 ± 4.9 years) showed features of CMB and DNMB, respectively.
were no specimens showing myogenic or melanotic differentiation, or features of anaplastic/large cell MB.1,4

Next, we divided the present 32 patients with MB into three groups on the basis of the differentiated features of the tumor cells: neuronal differentiation (ND), glial differentiation (GD) and differentiation-free (DF) groups. On the basis of the following criteria,7 we defined tumor cells as having features of ND: a reduced nuclear–cytoplasmic ratio, a fibrillary matrix and uniform cytology (Fig. 2C,D) and immunoreactivity for neuron-specific nuclear markers such as neuronal nuclei (NeuN: Fig. 2E) and doublecortin (DCX: Fig. 2F). Moreover, we defined tumor cells with a neurocytic appearance, negligible mitotic activity (Fig. 2C,D) and immunoreactivity for neuron-specific nuclear markers such as neuronal nuclei (NeuN: Fig. 2E) and doublecortin (DCX: Fig. 2F). Moreover, we defined tumor cells as having features of ND on the basis of immunoreactivity for GFAP. Specimens taken from one patient (a 1-year-old boy) showed extensive nodules with remarkable ND, and these features were compatible with those of MBEN.8,9 We included this case in the ND group. Therefore, we included 15 patients (10 male, five female: age 7.9 ± 4.0 years) and three patients (two male, one female: age 4.8 ± 5.0 years) in the ND and GD groups, respectively. The DF group was defined by the absence of both ND and GD (n = 14, eight male, six female: age 11.7 ± 6.6 years).

Histological and immunohistochemical procedures

The surgical specimens were fixed with 20% buffered formalin and embedded in paraffin. Histological examination was performed on 4-μm-thick sections stained with HE and silver impregnation for reticulin. The paraffin-embedded sections were also immunostained by the avidin-biotin-peroxidase complex method (Vector, Burlingame, CA, USA) with diaminobenzidine as the chromogen. Primary antibodies against the following antigens were used: NeuN (monoclonal, clone A60; Chemicon, Temecula, CA, USA; 1:150), DCX (polyclonal; Abcam, Cambridge, UK; 1:2000, pretreated by heating), GFAP (polyclonal; Dako, Glostrup, Denmark; 1:4000), Gli3 (polyclonal; Santa Cruz Biotechnology, Santa Cruz, CA, USA; 1:800, pretreated by heating) and Ki-67 (monoclonal, clone MIB-1; Dako; 1:100, pretreated by heating). The Ki-67 labeling index was evaluated by determining the percentage of positive nuclei present in at least 1000 tumor cells in representative areas of the specimens.

A double-labeling immunofluorescence study was performed on sections using the rabbit polyclonal Gli3 antibody and either the mouse monoclonal NeuN antibody or a mouse monoclonal GFAP antibody (clone GA5; Chemicon; 1:400). The secondary antibodies used were Alexa Fluor 488 goat anti-rabbit IgG (Molecular Probes, Eugene, OR, USA; 1:1000) and Alexa Fluor 568 goat anti-mouse IgG (Molecular Probes; 1:1000). Vectashield DAPI (Vector) was used as a nuclear marker. A laser scanning confocal microscope (Carl Zeiss LSM510, ver. 4.0, Göttingen, Germany) equipped with a ×40 oil immersion objective was used to visualize immunoreactivity.

Immunoelectron microscopy

The ultrastructural localization of Gli3 was examined using surgical specimens taken from two patients with MB (ND: one; GD: one), by employing the post-embedding method previously described.22 Small tissue blocks of the tumors were prepared from the formalin-fixed tissue, and washed with PBS. Then, the tissue blocks were washed with gradually increasing concentrations of dimethylformamide, and embedded in LR White resin (London Resin Company, Berkshire, UK). Ultrathin sections were cut, incubated with Gli3 (1:20) for 36 h, and reacted with 15-nm gold colloidal particle-conjugated anti-rabbit IgG (British Biocell, Cardiff, UK; 1:30). The sections were then stained with lead citrate, and examined with a Hitachi H-7100 electron microscope at 75 kV.

© 2013 Japanese Society of Neuropathology

Table 1 Clinicopathological profiles of the 32 patients with medulloblastoma

<table>
<thead>
<tr>
<th>Age at onset</th>
<th>n</th>
<th>10-year survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤7 years</td>
<td>11</td>
<td>OS: 73 ± 13, P = ns</td>
</tr>
<tr>
<td>>7 years</td>
<td>21</td>
<td>OS: 67 ± 11, P = ns</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>19</td>
<td>OS: 74 ± 10, P = ns</td>
</tr>
<tr>
<td>Female</td>
<td>13</td>
<td>OS: 62 ± 14, P = ns</td>
</tr>
<tr>
<td>Risk†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average risk</td>
<td>14</td>
<td>OS: 78 ± 11, P = ns</td>
</tr>
<tr>
<td>High risk</td>
<td>18</td>
<td>OS: 61 ± 11, P = ns</td>
</tr>
<tr>
<td>Tumor location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermis</td>
<td>30</td>
<td>OS: 67 ± 09, P = ns</td>
</tr>
<tr>
<td>Hemisphere</td>
<td>2</td>
<td>OS: 100 ± 0, P < ns</td>
</tr>
<tr>
<td>Chemoradiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI only (I)</td>
<td>6</td>
<td>OS: 50 ± 20, P = ns</td>
</tr>
<tr>
<td>CSI+ICE/PE (II)</td>
<td>23</td>
<td>OS: 70 ± 10, P = ns</td>
</tr>
<tr>
<td>CSI+HDCx+PBSCT (III)</td>
<td>3</td>
<td>OS: 100 ± 0, P = ns</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classic</td>
<td>21</td>
<td>OS: 62 ± 11, P = ns</td>
</tr>
<tr>
<td>Desmoplastic/nodular</td>
<td>11</td>
<td>OS: 82 ± 12, P = ns</td>
</tr>
<tr>
<td>Ki-67 labeling index <10%</td>
<td>13</td>
<td>OS: 62 ± 14, P = ns</td>
</tr>
<tr>
<td>10–50%</td>
<td>14</td>
<td>OS: 79 ± 11, P = ns</td>
</tr>
<tr>
<td>>50%</td>
<td>5</td>
<td>OS: 60 ± 22, P = ns</td>
</tr>
<tr>
<td>Gli3 immunoreactivity Positive</td>
<td>12</td>
<td>OS: 83 ± 11, P = ns</td>
</tr>
<tr>
<td>Negative</td>
<td>20</td>
<td>OS: 60 ± 11, P = ns</td>
</tr>
</tbody>
</table>

CSI, craniospinal irradiation; HDCx, cisplatin, cyclophosphamide and vincristine; ICE, carboplatin and etoposide or ifosfamide; ns, not significant; PBSCT, peripheral blood stem cell transplantation; PE, cisplatin and etoposide. *P ≤ 0.1, **P < 0.05, †(I)–(II): ns, (II)–(III): P < 0.003, (I)–(III): P < 0.05. Risk evaluation proposed by Laurent et al.21
Statistical analysis
The overall survival (OS) and event-free survival (EFS) rates of each group after initial clinical presentation were estimated using the method of Kaplan and Meier. Death, disease progression, recurrence and secondary malignancy were considered as the events. Statistical significance of differences between survival curves was tested by means of the log-rank test. Tests for associations between different parameters were carried out by the chi-squared test for 2 ¥ 2 and 2 ¥ 3 contingency tables. Data analysis was carried out using the SPSS version 17.0 software package (SPSS Inc., Chicago, IL, USA).

RESULTS
Gli3 expression
Gli3 immunoreactivity (IR) was observed as a clear circular stain outlining the nucleus of the tumor cells (Fig. 3A,B). The IR was observed in a large proportion of the ND+GD cases (94.4%; 17/18), but none of the DF cases (0%; 0/14). The difference in frequency of IR cases between the groups was significant (P < 0.001) (Fig. 5 and Table 2).

In the ND and GD cases, the majority of the tumor cells within the nodules appeared to show neuronal differentiation with IR for both Gli3 and NeuN (Fig. 3A,B). A double immunofluorescence study demonstrated that circular Gli3-IR enclosed densely packed granular NeuN-IR in the nuclei (Fig. 3C–H). In the GD cases, we observed a small number of Gli3-IR nuclei and GFAP-IR cytoplasmic processes of the tumor cells within and around the nodules (Fig. 3I–M).

In both ND and GD cases, immunoelectron microscopy demonstrated Gli3-IR at the inner membrane of the nuclear envelope with nuclear chromatin nearby, and inside the nucleus (Fig. 4).

Prognosis
Several clinical and histological characteristics, including age at onset, sex, risk evaluation factors proposed by Laurent et al., histological type, Ki-67 labeling index, and
Gli3-IR, showed no significant relationship with the OS rate, whereas induction of chemoradiation was significantly correlated with longer OS (Table 1). With regard to EFS rate, Gli3-IR in the tumor was significantly \((P < 0.05)\) associated with a favorable patient outcome. Being male and having DNMB tended to be associated with a favorable outcome, but not to a significant degree \((P < 0.1)\) (Table 1).

Evaluation of differences in the profiles of each histopathological group is summarized in Table 2. Both the OS and EFS rates in the ND group were significantly
higher than those in the other groups (Fig. 6 and Table 2). The GD group showed outcomes as equally poor as those of the DF group. It was found that the Ki-67 labeling index in the DF group tended to be higher than those in the ND and GD groups, although the inter-group differences were not significant (Table 2).

DISCUSSION

The findings of this study indicated that neuronal differentiation is associated with Gli3 expression in MB cells, and that this feature predicts a favorable outcome for patients with MB.

In the present study, all patients in the ND group showed a favorable course (Fig. 6 and Table 2). Previous reports have indicated that patients with MB accompanied by neuronal differentiation show good progress, being consistent with our findings. On the other hand, the association between glial differentiation in the tumor and patient prognosis has been unclear; the three patients in the GD group (Fig. 3I–M) showed miserable courses (Table 2), whereas some previous reports have indicated that patients with MB showing glial differentiation progressed well.24,25

Some previous reports have indicated that patients with DNMB did not show significant longer survival than those with CMB.16,17 Consistent with this, the difference on the 10-year OS rates of patients with CMB and those with DNMB was not significant (Table 2). Apparently, a large proportion of DNMB cases exhibited features of neuronal differentiation and Gli3 expression (Table 2). Therefore, combination of desmoplastic/nodular histological characteristics, NeuN indicating neuronal differentiation, and Gli3 expression, is useful for predicting a favorable outcome.
Fig. 4 Ultrastructural localization of Gli3. Immunoelectron microscopy of tumor cells within the nodules of neuronal differentiation (ND) and glial differentiation (GD) cases. Gli3 is visualized using 15-nm immunogold particles. (A) A low-magnification view showing several chromatin aggregates in the nucleus, and mitochondria, ribosomes and other organelles in the perinuclear cytoplasm. (C) A low-magnification view showing a relatively homogeneous inner structure of the nucleus and many glial fibrils in the plump cytoplasm. (B,D) A higher-magnification view of the area indicated by the asterisk in (A) and the clear square in (C), demonstrating Gli3 at the inner membrane of the nuclear envelope and nuclear chromatin nearby (arrows and arrowheads). Scale bar = 5 μm for (A), 7.5 μm for (C), and 615 nm for (B,D).

Fig. 5 Summary of medulloblastoma (MB) cases. Neuronal differentiation is well correlated with Gli3 expression in MB cells. Histopathologically, differentiation-free (DF) cases tend to show CMB. The DF and GD groups included many cases that were fatal or recurred. ND: Neuronal differentiation, GD: Glial differentiation, Rec.: Recurrence, EF: Event free, CMB: Classic MB, DNMB: Desmoplastic/nodular MB. Group; Case number; Dead; Rec.; EF; CMB; DNMB; Gli3(+); Gli3(-); ND(+); ND(-); GD(+); GD(-).

© 2013 Japanese Society of Neuropathology
One of the striking findings of this study was the clear topographical correlation between neuronal differentiation and Gli3 expression (Fig. 3A,B). We also confirmed the neuronal character of individual Gli3-expressing cells using NeuN immunohistochemistry (Fig. 3C–H). Thus, activation of the Shh signaling pathway involving Gli3 influences the neuronal differentiation of MB cells. Concerning the Shh pathway, mutations in the PTCH gene have been detected in 20–40% of DNMB cases, suggesting the importance of the pathway in tumor histogenesis.

Recently, a study involving administration of GDC-0449, a Shh antagonist (Fig. 1C), to a patient with MB and PTCH1 mutation was performed. Although the patient had multiple metastatic lesions, the tumors showed rapid regression after this treatment. This therapeutic approach has been verified by another recent study. Thus, regulation of this pathway affects tumorigenesis in MB.

As well as in MB, roles for Shh in the development of other CNS tumors, such as glioblastoma and neuroblastoma, as well as of carcinomas arising in visceral organs such as the colon, and also the breast, have been reported. Further investigation of patients with such tumors will be needed to clarify the correlation between Gli3 expression and patient prognosis.

Besides the Shh signaling pathway, molecular biological investigations and large-scale clinical studies have shown that various factors influence the prognosis of patients with MB. For example, expression of the downstream protein β-catenin promoted by the Wnt signaling pathway is considered to predict a favorable clinical course in children with MB. In the present study, we did not include results of immunohistochemistry for β-catenin/CTNNB1. In our series of medulloblastoma a subset of tumor cells exhibited nuclear staining; however, simultaneously we also observed unreliable cytoplasmic staining with or without nuclear staining. On the other hand, amplification of MYCC/MYC, Bel-2, and ErbB2 in tumor cells is thought to be an adverse prognostic factor. However, it has also been proposed that expression of Bel-2 may lead to a favorable outcome. Being male and the presence of metastatic lesions at the time of initial clinical presentation, may be associated with an undesirable course. Cellular characteristics such as apoptotic and mitotic activity, as indicated by the Ki-67 and BrdU labeling indices, may also suggest tumor progression. Thus, combinations of clinical, histopathological and molecular features may be used to predict more precisely the outcome of individual patients with MB. However, in the present study we detected no significant factors, including age, sex or the Ki-67 labeling index, that eventually influenced the outcome of patients with MB (Tables 1 and 2), although this may have reflected the small number of cases examined.

Recent genomic, transcriptome and DNA methylomics profiling approaches have suggested the existence of four distinct molecular subgroups of MB: wingless (WNT), SHH, Group 3 and Group 4. It has been anticipated that molecular profiling of biomarkers could be used for prognostication of patients with MB. Immunohistochemistry is one of the conventional approaches for verifying the expression of target proteins characterizing each subtype. Therefore, sets of candidate proteins, for example secreted fizzled-related protein 1 (SFRP1) and Gli1 for the SHH subgroup, CTNNB1 and DKK1 for the WNT subgroup, NPR3 for Group C, and KCNA1 for Group D, have been introduced. We have tried immunohistochemistry with antibodies against these introduced proteins for assignment of the subgroups, but failed to obtain reliable labeling (data not shown). In addition to immunohistochemistry, a molecular profiling study would be needed for such subgroup assignment. Based on the findings of the present study, Gli3 could be a potentially reliable and immunohistochemically informative prognostic biomarker for patients with MB.

The interesting expression profile of Gli3 (Fig. 3) may imply a certain biological role of the protein in MB cells, but its significance has remained unclear. It seems unlikely...
that the Gli3-expression could be associated with the cell cycle, because Gli3-immunoreactivity and Ki-67 labeling index in each group (Table 2) showed no apparent correlation. The ultrastructural localization of the protein (Fig. 4) appeared consistent with its immunohistochemical pattern. It is known that Gli3 is transported from the cytoplasm into the nucleus, where it inhibits transcription of target oncogenes.21 However, its expression profile has not been fully explained, even when considering its function. It has been shown that lamin A, a functional protein that maintains the shape of the nuclear envelope of muscle cells, is expressed as a similar circular stain around the nucleus.4 At present, there are no data suggesting an association between Gli3 and lamin A.

In summary, our findings indicate that neuronal differentiation associated with Gli3 expression contributes to a favorable outcome in patients with MB. This information may be of importance when considering new therapeutic strategies for MB.

ACKNOWLEDGMENT
This work was supported by a grant (24-7) for Nervous and Mental Disorders and a Health Labor Science Research Grant from the Ministry of Health, Labor and Welfare, Japan.

REFERENCES

