
Brain Research Institute Niigata University

Annual Report 2016

新潟大学脳研究所年報

2016

新潟大学脳研究所で開発された、脳機能解析と神経疾患モデル動物として有用な遺伝子改変ラット作製技術。独自に樹立されたSDラット由来胚性幹細胞(左上)に黄色蛍光タンパクが発現するよう遺伝子改変を行い、ラット初期胚に注入(右上)することで作製されたキメララット(下)。キメララットには胚性幹細胞由来の黄色蛍光が認められる。

目 次

1.	•)	組織図・研究所のデータ
2.	•	各分野の研究活動
	\bigcirc	分子神経生物学分野 · · · · · · · · · · · · · · · · · · ·
	\bigcirc	細胞神経生物学分野
	\bigcirc	システム脳生理学分野 ・・・・・・・・・・・・・・・・・・・・・・・・・・・13
	\bigcirc	病理学分野 / デジタル医学分野 / 脳疾患標本資源解析学分野 ・・・・・・・・・・・15
	\bigcirc	分子病態学(客員)分野
	\bigcirc	脳神経外科学分野
	\circ	神経内科学分野
	\circ	統合脳機能研究センター
	\bigcirc	遺伝子機能解析学分野 / 生命情報工学分野 · · · · · · · · · · · · · · · · · · ·
		動物資源開発研究分野 · · · · · · · · · · · · · · · · · · ·
	\bigcirc	分子神経疾患資源解析学分野 · · · · · · · · · · · · · · · · · · ·
		プロジェクト研究分野 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	•	社会との連携
4.		共同利用・共同研究拠点
4.	•	英间机角。英间侧孔拠点
		司利用・共同研究採択者一覧 ······ 59 告書
		プロジェクト型共同研究〕
	\subset	CADASIL・CARASIL モデル動物を使用した脳小血管病新規治療法の開発
		国立循環器病研究センター 猪原 匡史 ・・・・・・・・・・・・・・・・・・・63
	\subset	同時収集型 PET/MR 装置を用いた脳内アクアポリン動態に関連する脳機能探索に資する
		データ収集解析手法の開発
		福島県立医科大学先端臨床研究センター 久保 均 ・・・・・・・・・・・・65
	\subset) アルツハイマー病に関連するマルチオミックスデータの統合解析
		大阪大学大学院医学系研究科 菊地 正隆 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

\bigcirc	自由意志に基づく運動の神経基盤の解明
	京都大学霊長類研究所 中村 克樹71
\bigcirc	リン酸化αシヌクレイン陽性構造物を多く認めたダウン症例解析を中心とした
	リン酸化αシヌクレイン陽性構造物発現メカニズムの探索
	名古屋市立大学大学院医学研究科 赤津 裕康73
\bigcirc	精神疾患病態解明のための死後脳組織を用いた分子遺伝学的解析および画像解析
	東北大学災害科学国際研究所 富田 博秋
\bigcirc	GluD2 と平行線維シナプス再生に関する共同研究
	北海道大学大学院医学研究科 渡辺 雅彦
\bigcirc	脳内アミロイド 42 蓄積を血液バイオマーカーでスクリーニングする方法の開発
	大阪大学大学院医学系研究科 大河内 正康80
\bigcirc	ジェネティックニューロパソロジーによる精神疾患脳内分子表現型解析
	福島県立医科大学 國井 泰人82
\bigcirc	細胞内分解機構に着目したシヌクレイノパチーの分子病態解明と治療法開発
	弘前大学大学院医学研究科 丹治 邦和
\bigcirc	7T-MRI の特性を生かした脳機能解析法の開発
	自然科学研究機構生理学研究所 福永 雅喜
\bigcirc	中枢神経原発悪性リンパ腫の再発時の遺伝子異常の検討
	京都府立医科大学 山中 龍也90
\bigcirc	生体リズムの遺伝子改変マウスによる解析
	京都大学大学院薬学研究科 岡村 均
\bigcirc	神経変性疾患における Glymphatic system 破綻仮説の病理学的解析
	福島県立医科大学 星 明彦96
\bigcirc	神経回路の興奮性に対する CB2 受容体の役割の解明
	東京大学大学院医学系研究科 菅谷 佑樹98
\bigcirc	高磁場 MRI を用いた発達障害者及び幼少期被害体験者の統合的脳機能に関する研究
	国立成育医療研究センター 奥山 眞紀子 ・・・・・・・・・・・・・・・100
\bigcirc	糖鎖硫酸転移酵素遺伝子の脳特異的ノックアウトマウスの作成とその表現型解析
	関西医科大学 赤間 智也102
\bigcirc	EBV 関連中枢神経系原発悪性リンパ腫の免疫回避機構における PD-1 及び PD-L1 の役割
	久留米大学医学部 杉田 保雄104
\bigcirc	孤発例 ALS に関わる治療エピジェネティクス標的因子の探索
	岐阜薬科大学 保住 功
\bigcirc	認知症症例における髄液および血液中 ILEI 定量の意義に関する検証
	滋賀医科大学神経難病研究センター 西村 正樹 ・・・・・・・・・・・・・109
\bigcirc	視床下部のペプチド作動性神経による本能行動調節機構の解明
	名古屋大学環境医学研究所 山中 章弘111

\bigcirc	PNPLA6 遺伝子の脳における機能-有機リン被爆との関連から	
	東海大学医学部 木村 穣114	
\bigcirc	UBQLN2 コンディショナルノックアウトマウスの解析に基づく神経変性機序の解明	
	横浜市立大学大学院医学研究科 田中 章景118	
\bigcirc	哺乳類中枢神経系における神経回路形成の遺伝学的解析	
	国立遺伝学研究所 岩里 琢治121	
\bigcirc	大脳基底核内情報伝達におけるドーパミン神経伝達の機能の解析	
	自然科学研究機構生理学研究所 南部 篤	
\bigcirc	組換えウイルスを用いた筋萎縮性側索硬化症病変の発症進展機序の解明	
	杏林大学保健学部 渡部 和彦 · · · · · · · · · · · · · · · · · ·	
\bigcirc	神経変性疾患:特異的異常蛋白はシナプスを越えるのか	
	信州大学医学部 小栁 清光130	
\bigcirc	ドーパミン受容体変異マウスを用いた不安様行動発症機序の解明	
	北里大学医学部 飯田 諭宜133	
\bigcirc	Gut microbiota の制御が脳虚血病巣進展に及ぼす影響	
	日本医科大学武蔵小杉病院 西山 康裕136	
\bigcirc	異常凝集体の形成と伝播による神経細胞死機構の解明	
	京都大学大学院医学研究科 星 美奈子139	
\bigcirc	多系統萎縮症のステージ分類確立:グリア封入体を基盤とする分子病理学的解析	
	信州大学医学部 山田 光則142	
[連	烤 資源利用型共同研究〕	
\bigcirc	ヒト疾患情報に基づく脳神経系病態モデルマウスの開発に関する共同研究	
	理化学研究所バイオリソースセンター 吉木 淳 ・・・・・・・・・・・・144	
\bigcirc	剖検脳脊髄を用いた酸化ストレスによる神経細胞機能の障害と細胞死に関する研究	
	東京女子医科大学 柴田 亮行147	
\bigcirc	意思伝達不能状態(Stage V)にいたる筋萎縮性側索硬化症の臨床病理学的検討	
	都立神経病院 林 健太郎150	
\bigcirc	パーキンソン病関連タンパク質 Inhibitory PAS Domain Protein のリン酸化修飾	
	東北大学大学院生命科学研究科 十川 和博152	
\bigcirc	運動制御における大脳基底核ドーパミン神経伝達系の機能解析	
	大阪大学大学院生命機能研究科 木津川 尚史154	
\bigcirc	遺伝子改変マウスを用いた細胞外ドーパミン濃度制御機構の解析	
	東京工業大学生命理工学院 一瀬 宏	
\bigcirc	神経組織特異的 Scrapper コンディショナルノックアウトマウスの作製と解析	
	浜松医科大学 矢尾 育子 · · · · · · · · · · · · · · · · · ·	

\bigcirc	オートファジー関連神経変性疾患 SENDA の病態解析	
	群馬大学大学院医学系研究科 村松 一洋	162
\bigcirc	胎仔期および発達期の脳におけるドーパミン受容体 D1R の機能解析	
	北里大学医学部 大久保 直	164
\bigcirc	APP 細胞内ドメインの神経毒性の解析	
	北陸大学医療保健学部 中山 耕造	166
\bigcirc	ドパミン-D1R シグナルが心不全に果たす役割の解明	
	東京大学医学部 小室 一成	169
\bigcirc	脳アミロイドアンギオパチー関連炎症の発症機構の解明	
	金沢大学附属病院 坂井 健二	171
\bigcirc	筋線維メインテナンスに果たす WWP1 ユビキチンリガーゼの機能の解析	
	国立精神・神経医療研究センター神経研究所 今村 道博 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	173
\bigcirc	ゲノム編集技術と生殖工学技術を用いた効率的な遺伝子改変マウス作製	
	熊本大学生命資源研究・支援センター 中潟 直己 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	175
\bigcirc	筋萎縮性側索硬化症脊髄における VGF の局在に関する研究	
	岐阜薬科大学 嶋澤 雅光	178
\bigcirc	内在性 TDP-43 遺伝子改変と筋萎縮性側索硬化症モデルへの応用	
	北里大学医学部 佐藤 俊哉	180
\bigcirc	和歌山 ALS 症例における異常タンパク蓄積の分布と機序の解明	
	和歌山県立医科大学 伊東 秀文	182
進揚	步状況報告書	
	際共同研究〕	
	A comprehends study for prospective collaboration between Korea National Brain Bank and	
	Niigata BRI Brain Bank	
	韓国国立ブレインバンク-新潟大学脳研究所ブレインバンクの協力体制の確立と	
	共同研究実施に向けた調査研究	
	韓国国立ソウル大学病院 Sung-Hye Park · · · · · · · · · · · · · · · · · · ·	185
\circ	Preemptive medicine for Alzheimer's disease	
	2. Molecular imaging of water dynamics	
	1. アルツハイマー病の発症前診断・発症予防	
	2. 水動態の molecular imaging	
	カルフォルニア大学デービス校 Ingrid L Kwee · · · · · · · · · · · · · · · · · ·	186
\bigcirc	Neural mechanisms for consonance/dissonance perception in music: An ERP study	
	音楽における協和・不協和知覚の神経機構:事象関連電位を用いた研究	
	バース・スパ大学 アーサーズ裕子 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	187

\bigcirc	Assessment of auditory dysfunction in model animals for schizophrenia
	統合失調症モデル動物の聴覚機能障害の計測、評価
	アラバマ大学バーミンガム校 中沢 一俊 ・・・・・・・・・・・188
\bigcirc	Functional analysis of homeostatic synaptic plasticity-associated molecules
	恒常性シナプス可塑性関連分子の機能解析
	マサチューセッツ大学医学部 二井 健介189
\bigcirc	Research on pathway-specific control of motor activity and reward and aversive learning
	behavior via D1 and D2 dopamine receptors
	D1 及び D2 ドーパミン受容体を介する神経伝導路特異的な運動活性の調節及び
	学習行動の調節に関する研究
	イリノイ大学アーバナ・シャンペーン校 Yanyan Wang 190